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In order to eliminate the paradox due to the faster-than-light propagation of signals in standard relativistic 

models of fluids with dissipation, it is proposed to replace the dissipative coefficients in the constitutive 

equations by relaxation kernels, i.e. to use a theory with memory. It is shown that this yields signals with 

finite velocity, which. however, need not be less than that of light. The condition that the signal propagate 

at a velocity not exceeding that of light in a vacuum imposes certain u priori restrictions on the dissipative 

characteristics of a fluid. 

INTRODUCTION 

FLUIDS or gases with viscosity and heat conduction are described in relativity theory by two standard 
models, due respectively to Eckart [l] and Landau and Lifshits [2]; these models are physically 
equivalent [3], both preserving the characteristic feature of the non-relativistic Navier-Stokes- 
Fourier model, namely infinitely fast signal propagation in a locally attached inertial frame of 
reference (LAIFR). 

In non-relativistic mechanics the unrealiability of theories with instantaneous signal propagation 
has long been recognized. A modified heat equation was proposed, with the result that the dynamics 
of the temperature field is governed by a telegraph-type equation. This idea was generalized by 
postulating a relaxation connection between the heat flux and the temperature gradient [5], i.e. 
basing the discussion on a theory of media with memory [6, 71. A non-relativistic model of a viscous 
heat-conducting fluid with memory was constructed and it was proved that the signal velocity in such 
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a fluid is finite [S]. For infinitely slow processes, the constitutive equations of the model reduce to 
the Navier-Stokes and Fourier equations. 

Instead of the theory of media with memory, some of those working in non-equilibrium 
thermodynamics have proposed a different approach, known as extended thermodynamics [9, lo], 
which also leads to finite signal velocities. This involves treating the dissipative fluxes as 
independent variables. From a formal, mathematical point of view, the equations that arise here are 
identical with those of the theory of media with memory for a particular form of the relaxation 
kernels. Nevertheless, advocates of extended thermodynamics consider their approach more 
fundamental (see the discussion in [lo]). 

Methods of relaxation hydrodynamics will be used below to construct a model of a viscous 
heat-conducting fluid within the framework of special relativity. 

Throughout, the plane Minkowski metric (gap) = diag( 1, -1, -1, -1) will be used. Greek 
indices take values of 0, 1, 2 and 3, referring to some inertial frame of reference x”, with x0 playing 
the role of time. Latin indices a, b take values of 0, 1,2 and 3, Latin indices i, j, k, 1 take values of 1, 
2 and 3. Repeated indices indicate summation. In Sets 1 and 2 the formulas will be simplified by 
using a system of units of measurements in which the speed of light in vacuum is unity. 
Single-component fluids oniy will be considered and gravitation will be ignored. 

1. Following Eckart [I], we define the 4-velocity of a medium so that the mass flux in the LAIFR 
is zero. If IZ is the particle number density of the medium in the LAIFR, then i” = nzP is the mass 
flux 4-vector. The 4-velocity is normalized to give u,P = 1 and the flux satisfies the conservation 
equation 

‘R 

I .a =o (1.1) 
Let E be the energy density in the LAIFR, q” the heat flux 4-vector and 7~“~ the symmetric stress 

tensor. The energy-momentum tensor of the medium is given by the formula 

Tau=EUaUR+QaUP+U=QP+nuR (1.2) 

With this notation we have relations 

q%=O, a JPU =o 

The motion of the medium obeys the equations of energy-momentum conservation: 

T”“, &=O 

We define the projection tensor as Ail”@ = z.P~a -gap. Then 

&,A’“=-A p G 

We set 
n~fi=pA=P_tOP 

(1.3) 

(1.4) 

(3.5) 

(1.6) 

where p is the hydrostatic pressure and Ph is the tensor of viscous stresses. We set D = uOLd/axa, 
h = F +p, the latter being the enthalpy density in the LAIFR. Then, substituting (1.2) into (1.4) and 
using (1.3), (1.5) and (1.6), we obtain the equations of motion 

O=b,lTTB,B=hf)u,-A,~~q?+q~u~,~~ 

(1.7) 
+~,,e~~+A,‘p,,+Aa~z’R,e 

Let T be the absolute temperature, s the entropy density in the LAIFR and k the chemical 
potential. These quantities satisfy the thermodynamic relations 

rle = Tds+ pdn, ~=Ts-pf~n (1.8) 

It follows from (1.1) and (1.8) that 

O=U,T~~,~=T(~~~),~-~U~Q~+~~~~~+Z=~E~~,~ 
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This implies an equation for the production of entropy: 

(su”+T-‘q”) ,,-o=o 

a=q”[ ( T-‘),,ST-‘Du,]--T-‘?asu,,e 

(1.9) 

(1.10) 

where (T is the entropy produced per unit volume of the medium. 
We will now consider a specific world line of a particle of the fluid: xn = X”(T), where I is the 

proper time. Let eaa = e,=(~) be a tetrad carried along the world line in the sense of Fermi and 
Walker [ 1 I]. We have 

eon(r)=@(~V~)), eSaebB&3=g,b. 

We will need the following auxiliary notation: 

n,=n.a,e,“, To=Ts,eua, p,,=p.cre.5 

r u,b=un,Reorret, , q.’ =qaena, Tab’ = TagckaebP 

Latin indices may be raised and lowered with the help of the metric gab. We note that by (1.3) 
qo’ = 0, Tfkr’ = 0. 

Equations (1.1). (1.7) and (1.9) define the motion of the fluid. However, for the problem to be 
closed we also need the thermodynamic equations 

p=l)(r~, T), s=sin, T) (1.11) 

and the constitutive equations, i.e., explicit expressions for the heat flux and the tensor of viscous 
stresses in terms of the density field fz, the temperature T and the velocity u,, 

In the local theory, we set 

sr”(ro)=~‘i(ntt,), T(G), n,(r,), T,(G), tJ+.(tO)) (1.12) 

f’ijjTo)=T’i’(n(Ta), T(G), n,(To), Th(t,,). U,,(G)) (1.13) 

U(Tp)~O (1.14) 

at each point of the world line. Confining our attention to the linear approximation with respect to 
the spatial gradients in (1.12) and (I. 13) and accordingly to the quadratic approximation for cr, we 
derive an approximate formula Du, = -AUYh-‘p.y from (1.7) and substitute it into (1.10). Then the 
constitutive equations (1.12) and (1.13) take the following special form [ 11: 

Qi' ==-x( Ti-Tk‘p,), tij’=-~hgjj_2~Sij (1.15) 

h=“Ui’, Sij=‘/2 (U<j+Uji) -‘/.Jkgi, 

where x, q and p are the non-negative thermal conductivity and coefficients of bulk viscosity and 
translational viscosity, respectively. If the actual functions 

x=x(n, T), rj=r)(n, T), p=~ln, T) 

are known, the motion of the relativistic fluid is now described by a closed system of equations. 
Model (1.15) has a serious fault: it predicts infinitely fast signal propagation in the fluid. We 

therefore consider a theory with memory, following the ideas from [8]. 
When the fluid exhibits memory effects, the heat flux and the tensor of viscous stresses at any 

point of the world line become functionals of all previous states of a fluid particle: 

(J”(T”)=Q”[n(t=Zt,), T(~<t~), n,(t<d, Tj(zGre), u.~*(T<T.~)) 
(1.16) 

~‘j’(to)=~“j[n(t~7n), T(TGx~), n,(t<rd, T,(r~r,,), ukl(t.G-t,)) 

Let us suppose that as T+ fm the Auid moves forward at constant velocity (as a rigid body). Then 
we have the Clausius-Duhem inequality, which generalizes condition (I. 14): 
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Let us confine our attention to the case in which the density n and temperature T remain within a 
small neighbourhood of certain constants n, and T,. lffis any function of the parameters n and T, 
we will write 

/*=fln=n.. T=l’, 

We will need auxiliary notation: 

ibn-.-n*, bT--T*, &=p-p*, d,=Ssoe,5 

fJ,=i).,e,,“, &=&e,,=, &,=.A%-T&t+-‘g, 

We will confine our attention to the linear approximation of the functionals (1.6). The simplest 
linear functionals are convolutions with relaxation kernels. Proceeding as in [S], we take 

i-m 

4i fru) = - f K, (m - f) (ii (T) Jr 
--0D 

SW 4-y (1.18) 
-a 

Tij’ (to) == - !I Ki (To - T) 3, (f) dTgi j - 2 j K,(To -- T) sii (t) dz 
--00 --0 

It is natural to impose certain conditions on the relaxation kernels KA = KA (I) (A = 1,2,3). By 
the causality principle, iu, (T) = 0 if r<O. When T 20 the functions KA (7) are positive and 
monotone decreasing. 

For any function of time J(T) we let fF denote the Fourier-Laplace transform of the function: 

fF (w) .= if e-i”‘/ (r) dr 
A 

If f = f(7) is a real function, then 

(l#,(O))+=f+(l)) (1.19) 

By the Paley-Wiener Theorem, Ik;,tF(w) are homomorphic functions in the half-plane Imw>O 
and continuous up to the real axis. 

For infinitely slow processes, the model (1.18) reduces to (1.15). The dissipative coefficients can 
be expressed in terms of the kernels: 

q* -- ‘f K, (5) dr, 
f-m i-a 

Cl* .= s 
K,(T) dt, x, =:: 

s K, (7) dr 

We now return to condition (1.17). The fo~,~wing expression may Uhe derived from (1.18): 

i-Z+ ’ 

‘Y =., I’ 
l 

5 ‘r,~‘r,IK~(~I-T,)~,(rl)~(~lf + 2Ci’l(~I-t2)s~‘(t‘)~ij(~t)-. 
--Y -ID 

- T;‘K, (it- Tz) 8’ (TJ tti (x2)] 

Changing here to Fourier transforms we obtain 

do [He K,F (w) 1 AF (w) 1’ + 2 Re KPF ((0) sfij (w) & (w) - 

Hence it is clear that the Clausius-Duhem inequality is equivalent to the inequalities 
ReK,&w)aO, A = 2,2,3. 

If Re KAF vanishes at some frequency, this implies the existence of a non-dissipative oscillatory 
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process at that frequency-a phenomenon that may occur in superfluids. However. WC shall 

disregard such cases and impose stronger conditions: 

Re K.d 0) >O, A=l, 2, 3 (1.20) 

We have the asymptotic formula 

K,,(o)=(io)-‘KA(O)fo(lOl-‘) 
(1.21) 

Im oG0, A=O, 1, 2, 3, K,(r)=K,(r)f‘IJG(r) 

It follows from this formula and the properties of holomorphic functions that inequalities (1.20) 

hold throughout the lower complex half-plane. 

2. Let us consider the propagation of small disturbances in a fluid at rest. We will use the notation: 

V = grad, V+ = div. 

v is a column 3-vector with vi = vi and gl *g2 is the convolution of two functions with respect to time. 
Since we are concerned here with small perturbations, we may assume that the integration in 

(1.18) is performed with respect to the time x0 at a point of space with fixed coordinates xi. 

Then Eqs (l.l), (1.7) and (1.9) become 

-$ + n,V+v = 0 

h,$+pn*V6+pTaVO-(K1+;-Ke)*VV+v-K,dv+ 

+ -& V [K, * (T,h;‘pd + (T*h;‘pT, - 1) e)] = 0 

$ (S,,6 + ST$) + S*V+v + T;‘A [K, * (T&p,,& + (T,h;‘pT,- 1)8)] = 0 

(2.1) 

We will denote the Fourier transform of an arbitrary function g = g(P) by the symbol g,,(w, k,): 

go ((,), 1~) E s ’ e-i(wxy+kix”g (~a) dx” dx’ dx2 dx3 

We will now let the superscript + denote matrix transposition, and the symbol k the column 

vector k;, k’ = kfk. Carrying out a Fourier transformation we convert Eqs (2.1) into a system of 

linear algebraic equations; - 

& 

x 80, 

1 I 

._I 0, I: :: z (w, k) : 

UQ, 
io 0 in,k+ 

i (1 -t icoK,FT,h;‘) pn+k i (PT* + ~OK?F X ioh,+ (KIFS ‘,‘;K~F) kk++ 

= x (W;‘PT, - l))k + Kzpkz 

iw,+ - K,Fh;‘p,,k’ iST*6) -I- KJF X is,k+ 

x(T;’ -h;‘pT1) k2 (2.2) 
To investigate the propagation of a signal from some source. it is generally necessary to add 

sources of matter, force and entropy on the right of Eqs (1. l), (1.7) and (1.9) [and, accordingly. 
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(2.1)]. We will assume that the sources are concentrated at a point P in space-time. We must then 
add a constant 5-component vector I to the right-hand side of Eq. (2.2), to describe the strength of 

the sources. 
Consider the perturbations of the density, temperature and velocity fields induced by the action of 

the sources at a point of space with coordinates x0’ = L&‘, L > 0. 
After some calculation we get 

Y = &SeikIL(~(o.k))-1dk,dk,dk2 
(2.4) 

We note that (X(w, k))-’ = P-‘C*(o, k), w ere C* is the complementary matrix to 2, and h 

P=det Z( o, k) =P,‘Pz 

Pz=P::(o, k*) = (k’)*K,,[ -n*p,,*T*-‘+ioK,F(h*-‘pT*-T*-‘) ]+ 

+k’io [ -s~.tm.pne.+pr* (msnr-se) -ST&%F+ 

+idC3P( n*p,*s~*T*h*-‘-h*T*-‘+yT++ 
+ (T*h+c-‘p,*-- 1) (s*-n*s,*) ) ] +isT+h+ct? 

It is convenient to carry out the integration in (2.4) in spherical coordinates R, JI, cp, related to ki , 
k2, k3 by the equations 

k,-R sir1 Q cos tq. k2=R sin $ sin q, k,=R cos IJ. 

R>O, l@p” [-n/Z, rr/Z] . ‘C.El-Jb nl 

After integration with respect to cp, every element of the matrix Y is the sum of terms of the form 

’ y = c (CL\) 
\ 

exp (iRl. sin I$) Rn,2sirl’gco~“~+l~(~ (,G, R?))-‘dRd$ 
OCR:l-CO 

- Jt,‘&$at/2 (2.5) 

Since the elements of the matrix C*(w, k) are polynomials in ki, it follows that n = I + m. The 
matrix C(o, k) [and hence also X*(0, k)] remains invariant under the formal substitution (R, IJJ, 
9)-(--R, -$, -cp), whence it follows that m = 2q, where q is a natural number. 

We now substitute w = sin+ into (2.5) and integrate with respect to w: 
B 

y == c ((0) 
c 

c,” (- l)d 
c 

exp (iRL,w) R1+4q+2w1+2q (P (0, R2))-’ dR dw = 
I1 :. 0 0 ‘It’: +-cm 

--I< IS1 

=; c to,) k ad -1’ R2(q-nl) ‘1 cxp (iRZ,) (P ((tl, R2))-’ dR (2.6) 

where Cq” are the binomial coefficients and ad are constants. The last integral can be evaluated via 
the Residue Theorem, provided we close the path of integration in the upper complex half-plane. 

To that end we investigate the roots of the equation 

P(o, R*)-0 (2.7) 

in R. If ImosO this equation clearly has six roots, and the set of roots is invariant under inversion 
R-(-R). It is convenient to number the roots so that +R, (w) are the roots of the equation 
P,(w, R*) = 0, where ImR, (w)aO, while *R*(w) and &R,(w) are the roots of P2(w, R’) = 0 
where Im RA (w) 30 (A = 2, 3). 

As w varies in the lower complex half-plane, the roots R*(w) move in the upper complex 
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half-plane. It is important that the roots never cross the real axis, i.e. RA = RA (co) are smooth (even 
holomorphic) functions. 

To prove this assertion, let R be an arbitrary non-zero real number. Set F,(w) = PI (w, R’). Then F,(w) is 
holomorphic in the lower complex half-plane. Consider the behaviour of this function on the boundary of its 
domain of definition. As /w/--+m, Imw<O, we have ReF!-+-h* Imw>O. As Imw-+O, we see from (1.20) 
that ReF,+ RZ Re K2,>0. Hence it follows that ReF, >O throughout the lower complex half-plane, and 
therefore ImR,(o)>O for ImwSO. 

We now introduce a new thermodynamic variable r = s/n---the entropy per particle of the medium. Then the 
equation may be replaced by the equationsp = p(n, r), T = T(n, r). 

Put 

( dP 1 ( d/J 1 ( a7 dT 
P li*a= .- , I’,*‘= 7 , 4’,*‘= 

cir1 r* r n* 
.--i 1 1 T,,‘= ( 1 L.__ 

I-* dr n* 

We obtain 

f’:!(ti. nq:= -isf.h.t*)H’(‘Z+(hr+a2+h3/Zt a,&) 

I-icr,/fF, a,=,*- ‘ali’xp, a-=T;-IT,..‘--l4.-‘p,.’ 

h2=)~.-I[liOF+n.T.-'T,.'p,,.'a-'(icl))-'] 

h5=n.h.-‘1’.~#~~+~./6.-~pn.‘p..‘Ct-i(f6~)-’-- 

==bP.,+a(tW)-’ 

F-T:-IT,.‘--Il..-‘p,.‘. b=n.2/r.a@-‘T.-‘* 

a=n.Jt.-Zpn.‘pr.‘a-’ 

Let us assume the validity of the thermodynamic inequalities 

J&.’ jo, pl.‘>O, aXJ, fi>O 

Then, using conditions (1.20). we can show that if Imw<O 

Ilr hn 3, 0, if --= t, 2, 3 

In addition, the following asymptotic equalities are obtained from (1.21): 

h,l(w!=.\n(icO) -‘+o(jct+f -1). A-f, 2, 3 

‘~l==n,-“‘&K~(0), ,\2==-llS- * (.h’,(0)+n.T,-.LT,,‘p,,‘a-‘), ;\n=b.ir +a 

For real R # 0 we define 

F*(W) =z+hz+sh:/fz+k,) 

(2.8) 

(2.9) 

This function is holomorphic in the lower complex half-plane. We investigate its behaviour on the boundaries 
of its domain of definition. As /co+ I+ m, Imw < 0, 

iicF2+-R-z In-i (*>o 

As Imw+0, 

hJi& 
nc! Fz -* Re hz+H--= Ho ‘;-- 

* 

If Imw = 0 the last term becomes 

~?-z(f~~;~*bR-z)l~e &[(Re k,)2+-(~H-2+Im hrf21-* 

Hence, by (24, it follows that Re&>O as Imw -+O, and therefore Re F2>0 throughout the lower complex 
half-plane. It is now obvious that ImR,(o)>O, A = 2, 3. ImwSO. 

Integrating in (2.6), we obtain 
3 

y -_ 
c 

CA (0) exp (ifb (W) L) (2.10) 
A=1 

where c, (w) are holomorphic for Imo < 0 and satisfy the inequalities 



Signal propagation in a relativistic fluid 

Ic~!~clImol-N1(l+j(I)I)Nt 

with certain positive constants C, N1 and A$. 
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(2.11) 

Consider the 

It follows from 

functions 

L,=L,(o)=ImRA(0)I(-Imo), Imo<O (A=I, 2, 3) 

(2.3) and (2.10) that 

6F (0, I,j) 3 

ejv (0, z,j) 1 
z 

’ LA exp (iLR.4 (to)) 

vF (0, f,j) A=1 

(2.12) 

where l* = IA (0) are 5-component vectors, each component of which satisfies inequalities of type 
(2.11). It follows from (2.12) and the Paley-Wiener Theorem that there will be no disturbances at 

the point x,/ for x”< L if and only if 

Put 

L,(o)>l, Im o<O (A=i, 2, 3) 

vii = illf LA(W) (A == 1, 2, 3) 
ImocO 

We note that the functions LA = LA(w) cannot attain their infima at any point of the lower 

complex half-plane. 
Indeed, suppose the contrary: let w = q , Im oo< 0 be a point at which LA (w) has an absolute minimum for 

some A, LA (o,,) = VA-‘. Then the following harmonic function of the two real variables o, and o2 

assumes an absolute minimum zero at w,, Therefore hA = 0, contrary to our previous results. 
Thus, we can write 

Using (2.9), we now find that 

I+(h*-%,(O))‘” (2.13) 
3 

I’,,, = 2-” (A0 _t (A02 - 4A,A,)‘/1)% A, = 
c 

A_J 

=I 

It is clear from the preceding arguments that VA (A = 1, 2, 3) are the maximum velocities of 

propagation of different modes in the fluid. Formula (2.13) agrees with our previous result [12], 
since this mode describes vortex transport in a relativistic fluid. 

We have thus shown that the model of a relativistic fluid with memory provides a natural 

description of viscosity and heat conduction, while at the same time predicting a finite signal 
propagation velocity. For relaxation kernels of the most general form that satisfy all the conditions 
listed in Sec. 1, the velocity may nevertheless exceed the speed of light in a vacuum. The conditions 
V, d 1 should be considered as certain a priori restrictions on the dissipative properties of the fluid. 

The model proposed above should be used when the internal relaxation time of the medium is 

greater than or comparable in magnitude with the characteristic durations of the macroscopic 
processes. Otherwise the model will produce the same results as the Eckart or Landau-Lifshits 
models. 
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FAST ASYMPTOTIC FORM OF THE RESISTANCE OF 
BODIES IN A WAVEGUIDE LAYER OF NON-UNIFORM 

FLUIDS-F 
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Moscow 
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The asymptotic dependence of the wave resistance of bodies moving horizontally at a high speed in a 

wavcguide with an arbitrary stratified fluid is analyscd. For a waveguidc of finite depth, it is estahlishcd that 

the resistance is inversely proportional to the square of the velocity and directly proportional to the square 

of the volume. for small bodies. The general results are refined for uniform stratification and a pronounced 

transition layer. 

WHEN bodies move in a density-stratified fluid internal waves are excited and perturbations 
propagate inside the fluid. By virtue of this fact, even if viscous resistance is neglected (in the 
ideal-fluid approximation) the body will experience wave resistance. It is convenient, when 
calculating this, to replace the boundary-value problem of the flow around the body by the problem 
of the motion of mass or force sources, which are equivalent to the body in their hydrodynamic 
effect on the fluid. These might be mass dipole sources, distributed over the surface of the 

submerged body and found from the solution of the boundary integral equations, for example. The 
use of model distributions of sources is especially helpful because it enables a number of general 
conclusions to be drawn without having to solve the quite time-consuming problem of the specific 
form of the source distributions. 
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